ประกาศกระทรวงอุตสาหกรรม ฉบับที่ ๔๗๗๘ (พ.ศ. ๒๕๕๙) ออกตามความในพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. ๒๕๑๑ เรื่อง กำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ยาง - การหาปริมาณแมกนีเซียมในน้ำยางสดและน้ำยางข้นโดยการไทเทรต อาศัยอำนาจตามความในมาตรา ๑๕ แห่งพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม พ.ศ. ๒๕๑๑ ซึ่งแก้ไขเพิ่มเติมโดยพระราชบัญญัติมาตรฐานผลิตภัณฑ์อุตสาหกรรม (ฉบับที่ ๗) พ.ศ. ๒๕๕๘ รัฐมนตรีว่าการกระทรวงอุตสาหกรรมออกประกาศกำหนดมาตรฐานผลิตภัณฑ์อุตสาหกรรม ยาง - การหาปริมาณแมกนีเซียมในน้ำยางสดและน้ำยางข้นโดยการไทเทรต มาตรฐานเลขที่ มอก. 2658 - 2558 ไว้ ดังมีรายละเอียดต่อท้ายประกาศนี้ ทั้งนี้ ให้มีผลตั้งแต่วันที่ประกาศในราชกิจจานุเบกษาเป็นต้นไป ประกาศ ณ วันที่ ๑ กุมภาพันธ์ พ.ศ. ๒๕๕๘ อรรชกา สีบุญเรือง รัฐมนตรีว่าการกระทรวงอุตสาหกรรม # มาตรฐานผลิตภัณฑ์อุตสาหกรรม ยาง – การหาปริมาณแมกนีเซียมในน้ำยางสดและ น้ำยางขันโดยการไทเทรต มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ กำหนดขึ้นโดยรับ ISO 11852:2011 Rubber – Determination of magnesium content of field and concentrated natural rubber latex by titration มาใช้โดยวิธีพิมพ์ซ้ำ (reprinting) ในระดับ เหมือนกันทุกประการ (identical) โดยใช้ ISO ฉบับภาษาอังกฤษเป็นหลัก มาตรฐานผลิตภัณฑ์อุตสาหกรรมนี้ กำหนดวิธีหาปริมาณแมกนีเซียมของน้ำยางสดและน้ำยางขัน โดยวิธีไทเทรต รายละเอียดให้เป็นไปตาม ISO 11852:2011 #### © ISO 2011 เอกสารนี้เป็นสิทธิ์ของ ISO หากมิได้กำหนดไว้เป็นอย่างอื่นห้ามนำมาตรฐานฉบับนี้หรือส่วนหนึ่งส่วนใดไปทำซ้ำ หรือใช้ประโยชน์ในรูปแบบ หรือโดยวิธีใดๆ ไม่ว่าจะเป็นรูปแบบอิเล็กทรอนิกส์หรือทางกล รวมถึงการถ่ายสำเนา ถ่ายไมโครฟิลม์โดยไม่ได้รับอนุญาตเป็นลายลักษณ์อักษรจาก ISO ตามที่อยู่ข้างล่างหรือจากสมาชิก ISO ใน ประเทศของผู้ร้องขอ ISO copyright office Case postale 56 ● CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org #### COPYRIGHT PROTECTED DOCUMENT © ISO 2011 All rights reserved. Unless otherwise specified, no part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm, without permission in writing from either ISO at the address below or ISO's member body in the country of the requester. ember body in the country of the requeste ISO copyright office Case postale 56 • CH-1211 Geneva 20 Tel. + 41 22 749 01 11 Fax + 41 22 749 09 47 E-mail copyright@iso.org Web www.iso.org Published in Switzerland ii © ISO 2011 - All rights reserved | Coi | ntents | Page | |-------|----------------------------------------|------| | Fore | eword | | | 1 | Scope | | | 2 | Normative references | 1 | | 3 | Terms and definitions | 1 | | 4 | Field latex | 1 | | 4.1 | Principle | 1 | | 4.2 | Apparatus | 2 | | 4.3 | Reagents | 2 | | 4.4 | Procedure | | | 4.5 | Expression of results | 3 | | 5 | Concentrated latex | 4 | | 5.1 | Principle | 4 | | 5.2 | Apparatus | | | 5.3 | Reagents | 4 | | 5.4 | Procedure | | | 5.5 | Expression of results | 5 | | 6 | Precision | 6 | | 7 | Test report | 6 | | Anne | ex A (informative) Precision statement | 7 | | Bibli | iography | 9 | #### Foreword ISO (the International Organization for Standardization) is a worldwide federation of national standards bodies (ISO member bodies). The work of preparing International Standards is normally carried out through ISO technical committees. Each member body interested in a subject for which a technical committee has been established has the right to be represented on that committee. International organizations, governmental and non-governmental, in liaison with ISO, also take part in the work. ISO collaborates closely with the International Electrotechnical Commission (IEC) on all matters of electrotechnical standardization. International Standards are drafted in accordance with the rules given in the ISO/IEC Directives, Part 2. The main task of technical committees is to prepare International Standards. Draft International Standards adopted by the technical committees are circulated to the member bodies for voting. Publication as an International Standard requires approval by at least 75 % of the member bodies casting a vote. Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. ISO shall not be held responsible for identifying any or all such patent rights. ISO 11852 was prepared by Technical Committee ISO/TC 45, Rubber and rubber products, Subcommittee SC 3, Raw materials (including latex) for use in the rubber industry. # Rubber — Determination of magnesium content of field and concentrated natural rubber latex by titration WARNING — Persons using this International Standard should be familiar with normal laboratory practice. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user to establish appropriate safety and health practices and to ensure compliance with any national regulatory conditions. #### 1 Scope This International Standard specifies titration methods for the determination of the magnesium content of field and concentrated natural rubber latex, respectively. #### 2 Normative references The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies. ISO 124, Latex, rubber — Determination of total solids content ISO 385:2005, Laboratory glassware - Burettes ISO 648:2008, Laboratory glassware - Single-volume pipettes #### 3 Terms and definitions For the purposes of this document, the following terms and definitions apply. #### 3.1 #### natural rubber latex concentrate natural rubber latex from Hevea brasiliensis containing ammonia and/or other preservatives and which has been subjected to some process of concentration #### 3.2 #### magnesium content amount of magnesium, and possibly also other alkaline-earth metals (see the Note), present in a sample of natural rubber field latex or latex concentrate NOTE When ammonia is added to field latex, the calcium and magnesium ions present in varying concentrations in the serum of the latex are to a large extent precipitated as ammonium phosphate complexes, which gradually settle out in the sludge. The results of the test methods described in this International Standard are expressed as the magnesium content on the assumption, which is not strictly true, that magnesium is the only divalent alkaline-earth ion remaining in the latex after the sludge has been removed. Calcium ions are also present, occasionally in appreciable amounts. #### 4 Field latex #### 4.1 Principle The latex is centrifuged at between 2 500 m/s² (250g) and 5 000 m/s² (500g), using a laboratory centrifuge, for 3 min. A known mass of the resultant latex, free of sludge, is diluted with water, and the residual magnesium © ISO 2011 – All rights reserved content present in the latex is determined by titration with the disodium salt of ethylenediaminetetraacetic acid (EDTA.Na₂) in the presence of a buffer, using Eriochrome Black T as indicator. This method is applicable only to field latex preserved with ammonia or with a combination of ammonia and formaldehyde, in which the ammonia content on titration is not less than 0,2 % of the latex. The method determines the total concentration of divalent alkaline-earth ions remaining in the latex after the removal of sludge, and this is taken as the magnesium content. The magnesium content can be expressed either as a percentage of the mass of the latex or in milligrams per kilogram of latex. #### 4.2 Apparatus - **4.2.1 Laboratory centrifuge**, capable of producing an acceleration between 2 500 m/s² (250g) and 5 000 m/s² (500g). - 4.2.2 Centrifuge tubes, each of at least 50 cm3 capacity. - **4.2.3 pH-meter**, equipped with a glass electrode and a saturated calomel electrode of the sleeve or sintered-disc type and capable of reading to 0,1 pH-units. Calibrate the pH-meter by using buffer solutions of pH 4,00, 7,00 and 10,00. - 4.2.4 Burette, of capacity 10 cm³ or 50 cm³, complying with the requirements of ISO 385:2005, class A. - 4.2.5 Balance, accurate to 0,1 mg. - 4.2.6 Volumetric pipette, of capacity 10 cm³, complying with the requirements of ISO 648:2008, class A. #### 4.3 Reagents Use reagents of recognized analytical grade and deionized water or water of equivalent purity. #### 4.3.1 Magnesium sulfate solution, 0,005 M. Dissolve 1,231 6 g of magnesium sulfate heptahydrate (MgSO₄.7H₂O) in water. Make up to 1 dm³ in a volumetric flask. 1 cm³ of this solution is equivalent to 1 cm³ of 0,005 mol/dm³ EDTA.Na₂. #### 4.3.2 EDTA.Na₂ solution, 0,005 M. #### 4.3.2.1 Preparation. Dissolve approximately 1,86 g of EDTA.Na₂ in water and make up to 1 dm³. Standardize by titrating against standard magnesium sulfate solution (4.3.1). #### 4.3.2.2 Standardization. 2 Pipette 10 cm³ of the standard magnesium sulfate solution into a beaker. Add 200 cm³ of water and adjust the pH to 10,3 by adding buffer solution (4.3.4). Add about 0,1 g of Eriochrome black T indicator (4.3.3) and titrate with the EDTA.Na₂ solution. The colour change is from red to permanent blue. The concentration of the EDTA.Na₂ solution, c(EDTA.Na₂), is given, in mol/dm³, by: $$c\left(\mathsf{EDTA.Na_2}\right) = \frac{10 \times 0,005}{V}$$ where V is the volume of EDTA. Na₂ solution used, in cm³. © ISO 2011 – All rights reserved #### 4.3.3 Eriochrome black T indicator. Grind together, in a small pestle and mortar, 0,3 g of Eriochrome black T and 100 g of sodium or potassium chloride to give a homogeneous mixture. #### 4.3.4 Buffer solution. Dissolve 4 g of borax ($Na_2B_4O_7.10H_2O$) in approximately 80 cm³ of water. In another flask, dissolve 1 g of sodium hydroxide (NaOH) and 0,5 g of sodium sulfate (Na_2SO_4) in 10 cm³ of water. Mix the two solutions together and make up to 100 cm³. Ensure that all the reagents used contain less than 1 mg of magnesium per kilogram. #### 4.4 Procedure Carry out the procedure in duplicate, using separate test portions obtained from the same homogenized sample. If the individual results differ from their mean by more than 0,05 percentage points when the results are expressed as a percentage or by more than 5 mg/kg when the results are expressed in mg/kg, repeat the determination. Fill each of two centrifuge tubes to 90 % of its capacity with field latex and place in the centrifuge. Balance the two tubes and centrifuge the latex for 3 min at between 2 500 m/s² (250g) and 5 000 m/s² (500g). Taking care not to disturb the sludge at the bottom of the tube, weigh approximately 2 g to 3 g of the supernatant latex into a beaker containing 100 cm³ of water. Mix well. Check the pH of the latex solution and, if it is less than 10,3, add sufficient buffer solution (4.3.4) to raise the pH above this value. Note that, if the ammonia concentration is less than 0,35 % with respect to the latex or less than 0,50 % with respect to the water content for a latex of 30 % dry-rubber content, it is not in fact necessary to adjust the pH in this way. Add about 0,1 g of Eriochrome black T indicator (4.3.3) to the latex solution and stir. Then titrate with 0,005 mol/dm³ EDTA.Na₂ solution (4.3.2) until the colour of the solution becomes blue. NOTE 1 The end-point is a little difficult to detect with latex and it is advisable to have an over-titrated solution at hand for comparison. NOTE 2 This test method might be not applicable to field latex containing preservatives other than ammonia, in particular tetramethylthiuram disulfide (TMTD) or zinc oxide (ZnO). #### 4.5 Expression of results Calculate the magnesium content expressed as a percentage of the latex, $w_{Mg(\%)}$, using the following equation: $$w_{\text{Mg(\%)}} = \frac{c(\text{EDTA.Na}_2) \times V \times 24,31}{10 \times m}$$ Calculate the magnesium content expressed in mg/kg of latex, $w_{\rm Mg}$, using the following equation: $$w_{\text{Mg}} = \frac{c(\text{EDTA.Na}_2) \times V \times 24,31 \times 10^3}{m}$$ where c(EDTA.Na₂) is the concentration of the standardized EDTA.Na₂ solution used, in mol/dm³; V is the volume of EDTA.Na₂ solution used, in cm³; m is the mass of field latex taken, in g. Take as the test result the average of the two determinations: - rounded to two decimal places when the magnesium content is expressed as a percentage; - rounded to the nearest whole number when the content is expressed in milligrams per kilogram. #### 5 Concentrated latex #### 5.1 Principle Approximately 10 g of concentrated latex, of which the total solids content has been determined, is diluted with 10 cm³ of deionized water and coagulated with 5 cm³ of 25 % acetic acid. The coagulated latex is removed, leaving behind a clear serum. The residual magnesium present in a known volume of the serum is determined by titration with the disodium salt of ethylenediaminetetraacetic acid (EDTA.Na₂) in the presence of a buffer, using Eriochrome Black T as indicator. #### 5.2 Apparatus - 5.2.1 Burette, of capacity 10 cm³ or 50 cm³, complying with the requirements of ISO 385:2005, class A. - 5.2.2 Balance, accurate to 0,1 mg. - **5.2.3** Volumetric pipettes, of capacities 5 cm³ and 10 cm³, complying with the requirements of ISO 648:2008, class A. #### 5.3 Reagents Use reagents of recognized analytical grade and deionized water or water of equivalent purity. #### 5.3.1 Dilute acetic acid, 25 % by volume. Mix 250 cm³ of acetic acid with deionized water and make up to 1 dm³ with deionized water. #### 5.3.2 Ammonium chloride/ammonium hydroxide buffer solution. Dissolve 67,5 g of ammonium chloride (NH₄Cl) in 250 cm 3 of deionized water, mix with 570 cm 3 of 25 % ammonium hydroxide (NH₄OH) and make up to 1 dm 3 with deionized water. The solution should have a pH of about 10,5. #### 5.3.3 Potassium cyanide solution, (4 % by mass/volume) Dissolve 4 g of potassium cyanide (KCN) in 100 cm³ of deionized water. CAUTION — Potassium cyanide is very toxic and hazardous when inhaled, when in contact with the skin and if swallowed. Contact with acids liberates a very toxic gas. Personal protective equipment shall be worn at all times. Work under a hood. Titrated solutions containing residual KCN shall be disposed of using a proper disposal procedure for hazardous chemicals. #### 5.4 Procedure #### 5.4.1 General Carry out the procedure in duplicate, using separate test portions obtained from the same homogenized sample. If the individual results differ from their mean by more than 0,05 percentage points when the results are expressed as a percentage or by more than 5 mg/kg when the results are expressed in mg/kg, repeat the determination. 4 © ISO 2011 - All rights reserved #### 5.4.2 Determination of total solids content Take a portion of thoroughly mixed concentrated latex containing about 10 g of latex. Determine the total solids content of the concentrated latex in accordance with ISO 124. #### 5.4.3 Determination of magnesium content Weigh accurately about 10 g of concentrated latex into a 50 cm³ beaker and dilute with 10 cm³ of deionized water. Coagulate with 5 cm³ of 25 % acetic acid (5.3.1). Remove the coagulated latex, leaving behind a clear serum. Pipette 10 cm³ of the serum into a flask and adjust the pH of the mixture with an appropriate volume of buffer solution (5.3.2) to above 10,0. Add 4 cm³ of 4 % KCN (5.3.3). Titrate the magnesium present in the resulting solution with 0,005 mol/dm³ EDTA. Na₂ solution (4.3.2), using Eriochrome Black T (4.3.3) as indicator, until the colour of the solution becomes blue. #### 5.5 Expression of results Calculate the magnesium content expressed as a percentage of the total solids content (TSC) of the latex, $w_{Mq(\%TSC)}$, using the following equation: $$w_{\text{Mg(\%TSC)}} = \frac{c \left(\text{EDTA.Na}_2 \right) \times V \times 24,31 \times \frac{V_{\text{t}}}{V_{\text{s}}}}{10 \times m \times \text{TSC}}$$ Calculate the magnesium content expressed in mg/kg of the total solids in the latex, w_{Mg} , using the following equation: $$w_{\text{Mg}} = \frac{c \left(\text{EDTA.Na}_2 \right) \times V \times 24,31 \times \frac{V_{\text{t}}}{V_{\text{s}}} \times 10^3}{m \times \text{TSC}}$$ where c(EDTA.Na₂) is the concentration of the standardized EDTA.Na₂ solution used, in mol/dm³; V is the volume of EDTA.Na₂ solution used, in cm³; V_t is the total volume of serum produced, in cm³ (see below); V_s is the volume of serum used for the titration (= 10 cm³); m is the mass of concentrated latex taken, in g; TSC is the total solids content of the concentrated latex, in percent Calculate the total volume of serum produced from the following equation: $$V_{t} = \left(\frac{m - m_{s}}{\rho}\right) + V_{w} + V_{a}$$ where m is the mass of concentrated latex taken, in g; m_S is the mass of solids in the concentrated latex taken, in g, calculated from the equation $m_S = m \times TSC$; $V_{\rm W}$ is the volume of deionized water used (= 10 cm³); V_a is the volume of acetic acid used (= 5 cm³). ρ is the density of the serum, taken as 1 Mg/m³ 5 Take as the test result the average of the two determinations: - rounded to two decimal places when the magnesium content is expressed as a percentage of the TSC; - rounded to the nearest whole number when the content is expressed in milligrams per kilogram. #### 6 Precision See Annex A. #### 7 Test report The test report shall include the following information: - a) a reference to this International Standard; - b) all details necessary for the complete identification of the product tested; - c) the method of sampling used; - d) the type of instrument used; - e) the results obtained and the units in which they have been expressed; - f) any unusual features noted during the determination; - any operations not included in this International Standard or in the International Standards to which reference is made, as well as any incident which might have affected the result; - h) the date of the test. #### Annex A (informative) #### Precision statement #### A.1 Field latex - **A.1.1** The precision of the test method was determined in accordance with ISO/TR 9272. Refer to this document for terminology and other statistical details. - **A.1.2** The precision data are given in Table A.1. The precision parameters should not be used for acceptance or rejection of any group of materials without documentation that the parameters are applicable to those particular materials and the specific test protocols of the test method. The precision is expressed on the basis of a 95 % confidence level for the values established for repeatability, r_i and reproducibility, R. - **A.1.3** The results contained in Table A.1 are average values and give an estimate of the precision of this test method as determined in an interlaboratory test programme carried out in 2010 in which six laboratories took part, performing duplicate analyses on two samples (A and B) which were prepared from field latex. Before the bulk was sub-sampled into two bottles labelled A and B, it was filtered and homogenized by thorough stirring. Thus, essentially, samples A and B were the same and were treated as such in the statistical computations. Each participating laboratory was required to carry out the test, using these two samples, on the dates given to them. - **A.1.4** A type 1 precision was evaluated based on the method of sampling used for the interlaboratory test programme. - **A.1.5** The repeatability, r (in measurement units), of the test method has been established as the appropriate value tabulated in Table A.1. Two single test results, obtained in the same laboratory under normal test method procedures, that differ by more than the tabulated value of r (for any given level) are considered to come from different, or non-identical, sample populations. - **A.1.6** The reproducibility, R (in measurement units), of the test method has been established as the appropriate value tabulated in Table A.1. Two single test results, obtained in different laboratories under normal test method procedures, that differ by more than the tabulated value of R (for any given level) are considered to come from different, or non-identical, sample populations. Table A.1 — Precision data for field latex | Average result
mg/kg
123 | | Within-laboratory | | Between laboratories | | | |--------------------------------|--|------------------------|------------|------------------------|------------|---| | | | s _r
3,72 | r
10,53 | s _R
3,76 | R
10,63 | | | | | | | | | r | | S_T | is the within-laboratory standard deviation; | | | | | | | R | is the reproducibility (in measurement units); | | | | | | | s_R | is the between-laboratory standard deviation. | | | | | | **A.1.7** In test method terminology, bias is the difference between an average test value and a reference (or true) test property value. Reference values do not exist for this test method since the value (of the test property) is exclusively defined by the test method. Bias cannot therefore be determined for this particular method. #### A.2 Concentrated latex - **A.2.1** The precision of the test method was determined in accordance with ISO/TR 9272. Refer to this document for terminology and other statistical details. - **A.2.2** The precision data are given in Table A.2. The precision parameters should not be used for acceptance or rejection of any group of materials without documentation that the parameters are applicable to those particular materials and the specific test protocols of the test method. The precision is expressed on the basis of a 95 % confidence level for the values established for repeatability, r_i and reproducibility, R. - **A.2.3** The results contained in Table A.2 are average values for three different samples and give an estimate of the precision of this test method as determined in an interlaboratory test programme carried out in 2010 in which nine laboratories took part. - **A.2.4** A type 1 precision was evaluated based on the method of sampling used for the interlaboratory test programme. - **A.2.5** The repeatability, r (in measurement units), of the test method has been established as the appropriate value tabulated in Table A.2. Two single test results, obtained in the same laboratory under normal test method procedures, that differ by more than the tabulated value of r (for any given level) are considered to come from different, or non-identical, sample populations. - **A.2.6** The reproducibility, R (in measurement units), of the test method has been established as the appropriate value tabulated in Table A.2. Two single test results, obtained in different laboratories under normal test method procedures, that differ by more than the tabulated value of R (for any given level) are considered to come from different, or non-identical, sample populations. Within-laboratory Average result Between laboratories Sample mg/kg SR 3,56 3.76 10.64 29 1.27 A В 51 2.04 5.78 4,99 14,13 2,72 7,70 9,35 26,45 C 88 For the meanings of the symbols used, see Table A.1. Table A.2 — Precision data for concentrated latex **A.2.7** In test method terminology, bias is the difference between an average test value and a reference (or true) test property value. Reference values do not exist for this test method since the value (of the test property) is exclusively defined by the test method. Bias cannot therefore be determined for this particular method. ### Bibliography [1] ISO/TR 9272, Rubber and rubber products — Determination of precision for test method standards | มอก. 2658- | -2558 | |------------|-------| |------------|-------| ICS 83.040.10 Price based on 9 pages © ISO 2011 - All rights reserved